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1DVAR Atmosphere/Surface Retrieval Surface Emissivity/Backscatter Classification

Applications: Sensitivity to Accumulated Rain & Snow

(a) MERRA-2 Error Correlation Matrix
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GMI observations contain information about the atmospheric temperature and water vapor
profile and surface emissivity, in addition to clouds and precipitation. In clear-sky conditions,
the information content pertaining to the surface and atmospheric profile is high. To develop
databases of surface characteristics for use in all-sky retrievals, we have developed a 1DVAR
clear-sky retrieval for use with GPM data. One unique aspect of our approach is the use of
error covariance (and corresponding error EOFs; shown on the right) derived from comparisons
of MERRA2 reanalyses and radiosonde observations. With these error structures, we begin
with the MERRA2 data as the first guess and allow the retrieval to adjust the temperature and
water vapor profiles within the bounds implied by these error covariances using an optimal
estimation technique. This is superior to using climatological variability or a climatological first
guess, as shown below. For computational efficiency, only the first 5 EOFs are retrieved. This is
where the residual error in brightness temperature becomes similar to the channel noise.

An example retrieval is shown below, comparing three different representations of the a priori
atmospheric state and its error covariance. This case contained both synoptic-scale
precipitation associated with a cold front and lake-effect snowbands over the northeast United
State on 9 January 2015. The first row shows the retrieval using climatological first guess and
covariance (CLIM/CLIM). The retrieval correctly reduces the column water vapor to reduce the
brightness temperature error, but incorrectly attributes the cold Tbs in the snow bands to a
combination of very low water vapor and low surface emissivity. The second row uses the
MERRA2 atmospheric state as the first guess, with the climatological error covariance
(MERRA2/CLIM). The posterior brightness temperature error is reduced and the retrieved
column water vapor more closely resembles the MERRA2 field, but regions of precipitation are
still incorrectly attributed to low TPW and low emissivity. In the third row, the retrieval using
MERRA2 for both the first guess and error covariance is shown, and this retrieval does the best
job of correctly filtering out the precipitation-affected observations while still modifying the
clear-sky profiles to be consistent with the information contained in the GMI observations.
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The retrieval normalized cost (𝚽N), which represents
the departure of the retrieved state from the first
guess and the simulated from actual observations, can
be used to assess the probability of precipitation. On
the left, the DPR precipitation probability (black solid
line) is shown as a function of 𝚽N, generally increasing
once 𝚽N exceeds 1. The GPM-CloudSat matched
observations are also uses to assess the ability of GMI
to detect precipitation that is lighter than the DPR
detectability threshold. We note that the probability of
CloudSat-detected precipitation begins to increase at
lower 𝚽N values than DPR-detected precipitation,
affirming that GMI can indeed detect precipitation that
DPR cannot, and these values are used to convert the
𝚽N from the lake effect snow case to precipitation
probability above. We also note that some light
precipitation, predominantly snow, cannot be detected
by GMI using any 𝚽N threshold. The impact of liquid
clouds (which are not accounted for in this retrieval
over land surfaces) is also examined using MERRA2.
The occurrence of 0.02 and 0.1 kg/m2 liquid water path
clouds also increases as a function of 𝚽N, indicating
some potential for this method to detect liquid clouds
over land as well.
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A Kohonen Self-Organizing Map clustering technique is used to classify surfaces based on their emissivity and backscatter properties. Separate 
classifications  were performed for non-snow-covered land (left), snow-covered land (middle), and sea ice (right). These classes reveal the gradation of 
surface properties as vegetation, inundated area, surface roughness, and surface composition changes. The snow classes have a strong seasonal 
dependence, as as snowpack water equivalent and grain size evolve throughout the season, eventually melting. Likewise, sea ice expands in concentration 
and accumulates snow throughout the winter before melt ponds eventually form. These surface classifications will be used in an upcoming version of the 
GPM Combined Algorithm.

The GMI surface emissivity database is used to examine the sensitivity of emissivity to rainfall by
comparing observations after dry periods with those after various amounts of rain have fallen. The 10
and 19 GHz horizontally-polarized emissivities are most sensitive to rainfall over surfaces with low to
moderate amounts of vegetation, with strong decreases in emissivity in proportion to the amount of
rainfall. Curiously, some desert surfaces appear to increase in emissivity after rain events, a
phenomenon which is currently being explored. For more information, see poster 241 by Yalei You,
“Daily Rainfall Estimate by Emissivity Temporal Variation from 10 Satellites”

The response of surface emissivity and backscatter to snowfall is examined above. We compared the
emissivity and backscatter when minimal (0-1 mm), moderate (1-10 mm), and large (10-100mm) amounts
of snow water equivalent (SWE) were present, using MERRA2 reanalysis. The 89 and 166 GHz channels are
most sensitive to increases from minimal to moderate SWE, whereas the 36 GHz channel is sensitive to
larger amounts. The backscatter response depends on incidence angle and frequency – near-nadir
backscatter decreases with SWE over most surfaces, but off-nadir backscatter increases, with effects more
pronounced at Ka band than Ku band. Both emissivity and backscatter responses to snowfall also show a
strong dependence on the underlying surface type after controlling for SWE amount.


